

Defense Nuclear Agency Alexandria, VA 22310-3398

DNA-TR-90-94

AD-A229 999

Kinetic Branching of the N* + 0₂ Reaction

H. H. Michels United Technologies Corporation Research Center Silver Lane East Hartford, CT 06108

December 1990

Technical Report

CONTRACT No. DNA 001-88-C-0032

Approved for public release; distribution is unlimited.

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: CSTI, 6801 TELEGRAPH ROAD, ALEXANDRIA, VA 22310-3398, IF YOU'R ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

DISTRIBUTION LIST UPDATE

This mailer is provided to enable DNA to maintain current distribution lists for reports. We would appreciate your providing the requested information.

Add the individual listed to your distribution list. Delete the cited organization/individual.	NOTE: Please return the mailing label from the document so that any additions, changes, corrections or deletions can be made more easily.
NAME:ORGANIZATION:	
OLD ADDRESS	CURRENT ADDRESS
TELEPHONE NUMBER: () SUBJECT AREA(s) OF INTEREST:	
DNA OR OTHER GOVERNMENT CONTRACT NUMBER: _ CERTIFICATION OF NEED-TO-KNOW BY GOVERNMENT	
SPONSORING ORGANIZATION	
CONTRACTING OFFICER OR REPRESENTATIVE	
SIGNATURE	

Director
Defense Nuclear Agency
ATTN: TITL
Washington, DC 20305-1000

Director Defense Nuclear Agency ATTN: TITL Washington, DC 20305-1000

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and reviewing the collect for reducing this burden, to Washington Headquarten to the Office of Management and Budget, Paperwork	tion of Information. Send comments regard a Services, Directorate for Information Op Reduction Project (0704–0188), Washing	ding this burden estimate or any other perations and Reports, 1215 Jefferson pton, DC 20503.	aspect of this collection of information, including suggestions. Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DA	
	901201	Technical -	- 890415 - 900415
4. TITLE AND SUBTITLE	• • • • • • • • • • • • • • • • • • •		5. FUNDING NUMBERS
Kinetic Branching of the N* +	O ₂ Reaction		C - DNA 001-88-C-0032 PE - 63220C PR - SA
6. AUTHOR(S)			TA - SA
H. H. Michels			WU - DH048180
7. PERFORMING ORGANIZATION NAME United Technologies Corporation Research Center Silver Lace	, ,		8. PERFORMING ORGANIZATION REPORT NUMBER UTRC - Topical Report 1990
East Hactord, CT 06108			
9. SPONSORING/MONITORING AGENC Defense Nuclear Agency 6801 Telegraph Road Alexandria, VA 22310-3398 RAAE/Berggren	Y NAME(S) AND ADDRESS(ES	S)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER DNA-TR-90-94
11. SUPPLEMENTARY NOTES			
This work was sponsored by the RAAE 3200A 25904D.	Defense Nuclear Agency	under RDT&E RMC	code B7660D SA SA 00186
12a. DISTRIBUTION/AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
Approved for public release; di	stribution is unlimited.		
13. ABSTRACT (Maximum 200 words)			
A preliminary analysis of the N	_	-	the branching leading to the

formation of vibrationally excited NO product. This analysis includes a detailed study of 31 potential energy surfaces for reactions which include all states up to $N[^2P] + O_2[X^3\Sigma_g^-]$ reactants. Only 1/6 of all collisions involving $N[^2P]$ atoms appear to lead to rovibrationally excited NO molecules. The exothermicity of the $N[^2P] + O_2$ reaction appears to mainly result in electronically excited products.

			15. NUMBER OF PAGES 22
Kinetic branching N* + O ₂	Correlation diagram N + O ₂	Electronic state O + N ₂	16. PRICE CODE
17 SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19 SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR

UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS PAGE	
CLASSIFIED BY:	
N/A since UNCLASSIFIED	
DECLASSIFY ON:	
N/A since UNCLASSIFIED	
Accesion For	
NTIS CRA&I DTIC TAB U. announced	
U. announced Justification	
By	
Dut ibution/ Availability Codes	
Availability Codes	
Dist Avail a:.d/or Special	
A-1	
0310 - WI	\
, Ad. ')
0170	<i>'</i>

SECURITY CLASSIFICATION OF THIS PAGE

Conversion Table

(Conversion factors for U.S. customary to metric (SI) units of measurement)

To Convert From	To	Multiply By
angstrom	meters (m)	1.000 000 x E-10
atmosphere (normal)	kilo pascal (kPa)	1.013 25 x E+2
bar	kilo pascal (kPa)	1.000 000 x E+2
barn	meter ² (m ²)	1.000 000 x E-28
British thermal unit (thermochemical)	joule (J)	1.054 350 x E+3
cal (thermochemical)/cm ²	mega joule/m ² (MJ/m ²)	4.184 000 x E-2
calorie (thermochemical)	joule (J)	4.184 000
calorie (thermochemical)/g	joule per kilogram (J/kg)	4.184 000 x E+3
curie	giga becquerel (GBq)	3.700 000 x E+1
degree Celsius	degree kelvin (K)	$t_{\kappa} = \dot{t_{\rm C}} + 273.15$
degree (angle)	radian (rad)	1.745 329 x E-2
degree Fahrenheit	degree kelvin (K)	$t_{\kappa} = (\dot{t_F} + 459.67)/1.8$
electron volt	joule (J)	1.602 19 x E-19
erg	joule (J)	1.000 000 x E-7
erg/second	watt (W)	1.000 000 x E-7
foot	meter (m)	3.048 000 x E-1
foot-pound-force	joule (J)	1.355 818
gallon (U.S. liquid)	meter ³ (m ³)	3.785 412 x E-3
inch	meter (m)	2.540 000 x E-2
jerk	joule (J)	1.000 000 x E+9
joule/kilogram (J/kg) (radiation dose absorbed)	gray (Gy)	1.000 000
kilotons	terajoules	4.183
kip (1000 lbf)	newton (N)	4.448 222 x E+3
kip/inch ² (ksi)	kilo pascal (kPa)	6.894 757 x E+3
ktap	newton-second/m ² (N-s/m ²)	1.000 000 x E+2
micron	meter (m)	1.000 000 x E-6

Conversion Table (Concluded)

To Convert From	То	Multiply By
mil	meter (m)	2.540 000 x E-5
mile (international)	meter (m)	1.609 344 x E+3
ounce	kilogram (kg)	2.834 952 x E-2
pound-force (lbf avoirdupois)	newton (N)	4.448 222
pound-force inch	newton-meter (N•m)	1.129 848 x E-1
pound-force/inch	newton/meter (N/m)	1.751 268 x E+2
pound-force/foot ²	kilo pascal (kPa)	4.788 026 x E-2
pound-force/inch ² (psi)	kilo pascal (kPa)	6.894 757
pound-mass (lbm avoirdupois)	kilogram (kg)	4.535 924 x E-1
pound-mass-foot ² (moment of inertia)	kilogram-meter ² (kg•m ²)	4.214 011 x E-2
pound-mass/foot ³	kilogram-meter ³ (kg/m ³)	1.601 846 x E+1
rad (radiation dose absorbed)	gray (Gy)	1.000 000 x E-2
roentgen	coulomb/kilogram (C/kg)	2.579 760 x E-4
shake	second (s)	1.000 000 x E-8
slug	kilogram (kg)	1.459 390 x E+1
torr (mm Hg, 0°C)	kilo pascal (kPa)	1.333 22 x E-1

TABLE OF CONTENTS

Section		Page
	Conversion Table	iii
	List of Illustrations	vi
	List of Tables	vii
1	Kinetic Branching of the N* + O ₂ Reaction	1
2	List of References	12

LIST OF ILLUSTRATIONS

Figure		Page
1	Molecular correlation diagram for low-lying states of NO_2 in $C_{\infty v}$ symmetry.	4
2	Molecular correlation diagram for low-lying states of NO_2 in C_s symmetry.	5
3	Molecular correlation diagram for low-lying doublet states of NO_2 in C_s symmetry.	6
4	Molecular correlation diagram for low-lying quartet states of NO ₂ in C ₅ symmetry.	7

LIST OF TABLES

Table		Page
1	Molecular correlation diagram for N + O ₂	8
2	Adiabatic reaction surfaces arising from N[2P] + O2	10
3	Adiabatic reaction surfaces arising from N[2D] + O2	10
4	Minimum energy long range interaction potentials for $N + O_2$ in C_s symmetry	11

SECTION I

KINETIC BRANCHING OF THE N* + O2 REACTION

A study of the atmospheric reactions $O + N_2$ and $N + O_2$ which yield vibrationally excited NO molecules has been initiated. The sources of NO emission in the IR are not fully understood and the detailed kinetic branching of these reactions is being studied (References 1 and 2). In particular, the role of the $N[^2P] + O_2[X^3 - \mathbb{Z}_g]$ reaction in the production of vibrationally excited NO molecules is being examined. The current NORSE code assumes that all of the exothermicity of this reaction goes into vibrational excitation of the NO product molecule, with all levels being equally populated up to v = 26. The purpose of this report is to examine in detail the kinetic routes of the $N + O_2$ reaction, including those which lead to electronic as well as vibrationally excited products. A preliminary *ab initio* study of the reaction has been carried out which suggests that only a fraction of the collisions result in vibrational excitation in the product channels.

The molecular correlation diagram for the N + O_2 reaction is given in Table 1 for C_s , C_{2v} and $C_{\infty v}$ symmetry. This corresponds, respectively, to oblique, perpendicular and linear collisions of the N atom with the O_2 target molecule. The adiabatic molecular correlations for $C_{\infty v}$ and C_s symmetry are shown in Figs. 1 and 2, respectively. These diagrams represent a more complete version of those given by Donovan and Husain (Reference 3) and by Schofield (Reference 4).

Since the kinetic behavior is governed by an average over all collisional trajectories, we illustrate the adiabatic correlations in C_s symmetry for the doublet surfaces in Fig. 3, and for the quartet surfaces in Fig. 4. In particular, we illustrate the adiabatic connections from $N[^2P] + O_2[X^3\Sigma_g^-]$ in bold lines on these figures. The energetics of the adiabatic reaction surfaces arising from $N[^2P] + O_2$ and $N[^2D] + O_2$ are shown in Tables 2 and 3, respectively. For $N[^2P] + O_2$, only the third reaction [yielding $NO(X^2\Pi) + O^*(^1D)$] is exothermic enough to yield NO with a significant degree of vibrational excitation, provided that this reaction proceeds along an adiabatic pathway. However, there is spectroscopic evidence that curve-crossing and non-adiabatic behavior may occur for this system. The ground 2A_1 state of NO_2 adiabatically correlates to the reactants: $N[^4S] + O_2[X^3\Sigma_g^-]$, whereas the first excited 2B_1 state correlates to excited state reactants, $N[^2D] + O_2[X^3\Sigma_g^-]$. However, the 2B_1 state lies lower as we connect to the $NO(X^2\Pi) + O[^3P]$ dissociation limit. In addition, Gilmore (Reference 5) has pointed out that NO quenching of both $O^*[^1S]$ and $O^*[^1D]$ proceeds very rapidly, further indicating curve-crossings in the doublet surfaces.

In order to clarify the branching kinetics of the N*[2P] + $O_2[X^3\Sigma_g]$ reaction, we have initiated an extensive series of calculations of the potential energy reaction surfaces for NO₂ in the following symmetries: $^2A'$, $^2A''$, $^4A''$, $^4A''$. Preliminary CI calculations, using the GAMESS code (Reference 6), were carried out in C_s symmetry assuming a frozen core of $(1a'^2)(2a'^2)(3a'^2)$

(4a'²), (5a'²) (6a'²), which is the Hartree-Fock representation of the inner 1s and 2s electrons. Unfortunately, the characteristic charge density corresponding to this core representation differs significantly for different spin and spatial couplings of N + O₂. The characteristic charge of the (6a'²) pair, for example, differs in calculations in ²A' symmetry as compared with ²A" or ⁴A' symmetry. Thus only a frozen inner shell (1s electrons) appears to be possible for this system. This smaller frozen core representation results in a great increase in the CI size, from 3048 to 28503 for ²A' symmetry and from 3000 to 28125 for ²A" symmetry. The calculations must therefore be carried out on a CRAY computer and the necessary code modifications for running this problem on the DNA access machines at LANL have been made. The calculations are carried out in C₅ symmetry since we need to simultaneously examine the N + O₂ reaction path on nineteen surfaces in ²A' and ²A" symmetry and on twelve surfaces in ⁴A' and ⁴A" symmetry.

The results of our initial studies of the long range $N + O_2$ behavior are summarized in Table 4. We find that two of the states correlating to $N[^2P] + O_2[X^3\Sigma_g^-]$, $^2A'X$ and $^2A''$ IX, exhibit long range repulsion and thus should correlate adiabatically to $NO[a^4\Pi] + O[^3P]$ and $NO[X^2\Pi] + O[^1S]$ respectively. This leaves only the $^2A''$ VIII surface correlating to $NO[X^2P] + O[^1D]$. For the quartet surfaces which adiabatically correlate to $NO[a^4\Pi] + O[^3P]$, no vibrationally excited ground state $NO[X^2\Pi]$ is predicted. Detailed calculations of these quartet surfaces are in progress.

The statistical branching in the N + O_2 reaction can be partially analyzed in terms of these calculated potential energy surfaces. In Table 2, which lists the N * $[^2P]$ + O_2 reaction surfaces, we see that only the third reaction, which yields NO[X $^2\Pi$] + O[1D], is exothermic enough to yield NO with any significant degree of vibrational excitation. The reaction surfaces for N * $[^2D]$ + O_2 are listed in Table 3. Three surfaces represent closed (endowermic) channels for low energy collisions and are non-reactive for air chemistry. Six surfaces produce ground state NO with nearly 4 eV internal (rovibrational) energy and one surface produces NO with less than 2 eV internal energy. Thus, of the 16 potential surfaces governing the N[2D] + O_2 and N[2P] + O_2 reactions, we find the following:

- a. 3 are non-reactive (endothermic)
- b. 6 lead to electronically excited products with the result that the NO that is produced is not rovibrational excited.
- c. 7 lead to the production of ground state NO with significant (3-4 eV) rovibrational excitation.

Further, 60% of all collisions involving $N[^2D]$ atoms should produce NO with significant internal excitation but only 1/6 of all collisions involving $N[^2P]$ atoms appear to lead to rovibrationally excited NO molecules. Non-adiabatic behavior at closer internuclear separations could modify these relative branching ratios but will not change the conclusion that $\sim 1/2$ of all collisions of $N[^2D, ^2P] + O_2$ lead to NO with little or no rovibrational excitation. Detailed studies of these reaction surfaces are in progress to further analyze the branching rates in this system.

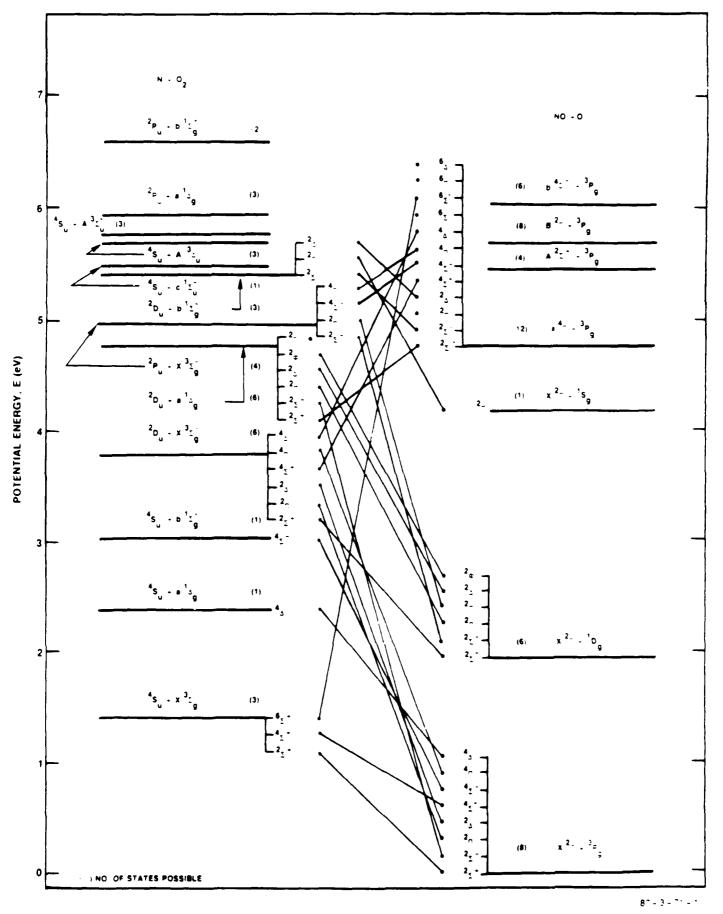


Figure 1. Molecular correlation diagram for low-lying states of NO_2 in $C_{\infty v}$ symmetry.

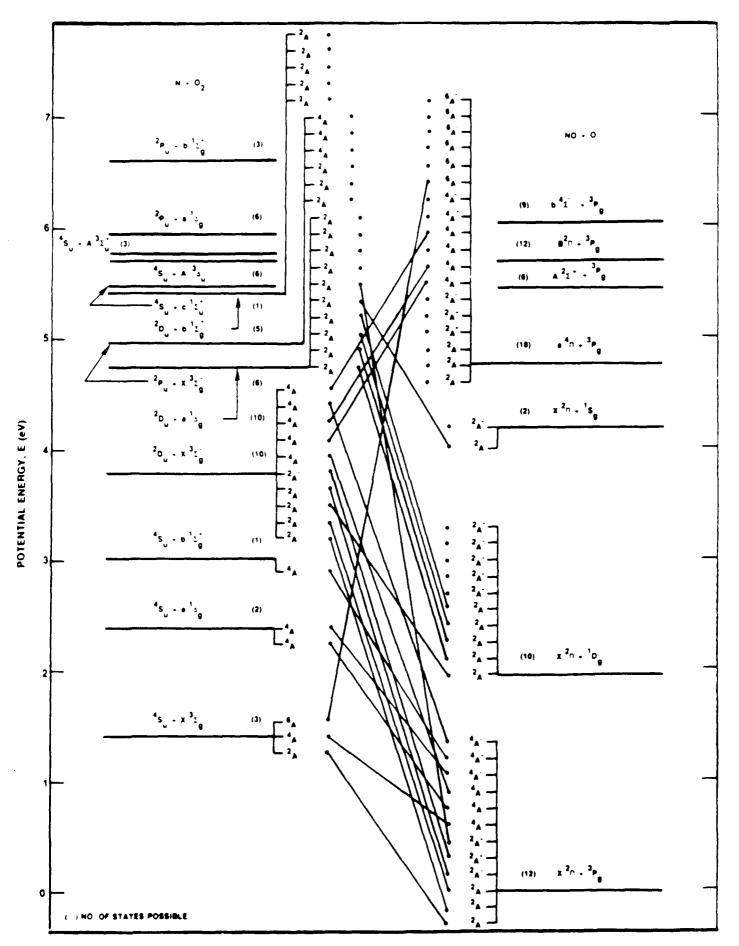


Figure 2. Molecular correlation diagram for low-lying states of NO_2 in C_s symmetry.

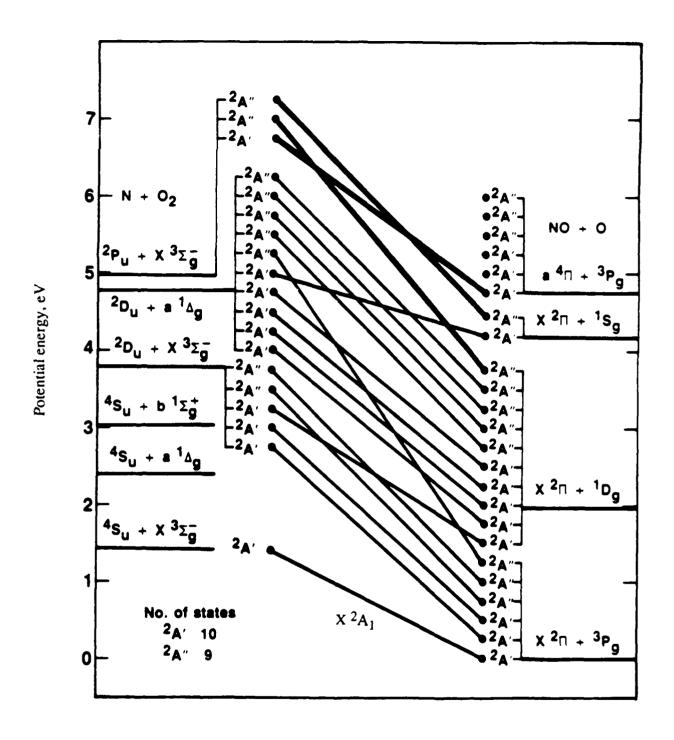


Figure 3. Molecular correlation diagram for low-lying doublet states of NO_2 in C_s symmetry.

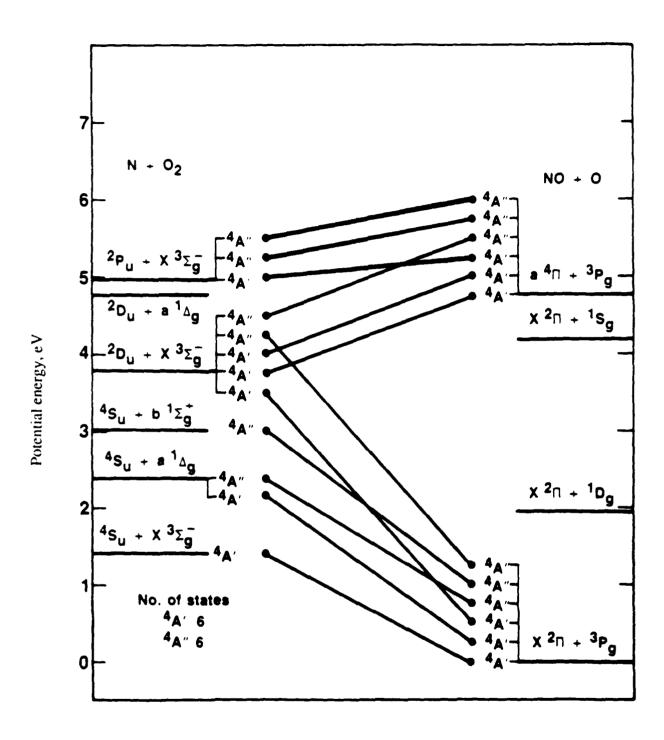


Figure 4. Molecular correlation diagram for low-lying quartet states of NO_2 in C_s symmetry.

Table 1. Molecular correlation diagram for $N + O_2$.

Reactants	Energy (eV)	States	Point Group
$N(^4S_u) + O_2(X^3\Sigma_g^-)$	1.401	2,4,6∑ +	$C_{\infty v}$
•		2,4,6 _B ,	C _{2v}
		2,4,6 _A ,	Cs
$N(^4S_u) + O_2(a^1\Delta_g)$	2.383	4 ∆	C _{∞v}
		⁴ A ₂ , ⁴ B ₁	C _{2v}
		⁴ A", ⁴ A'	C_s
$N(^4S_u) + O_2(b^1\Sigma_g^+)$	3.037	4Σ−	$C_{\infty v}$
· ·		⁴ A ₂	C_{2v}
		⁴ A"	Cs
$N(^2D_u) + O_2(X^3\Sigma_g^-)$	3.785	$2.4\Sigma^{+}$, 2.4Π , 2.4Δ	$C_{\infty v}$
		$^{2,4}B_1$ (2), $^{2,4}B_2$, $^{2,4}A_2$, $^{2,4}A_1$,	C _{2v}
		^{2,4} A" (2), ^{2,4} A' (3)	Cs
$N(^2D_u) + O_2(a^1\Delta_g)$	4.766	$^{2}\Sigma^{+}$, $^{2}\Sigma^{-}$, $^{2}\Pi$, $^{2}\Delta$, $^{2}\Phi$, $^{2}\Gamma$	$C_{\infty v}$
-		${}^{2}A_{1}(2)$, ${}^{2}A_{2}(3)$, ${}^{2}B_{1}(3)$, ${}^{2}B_{2}(2)$,	C _{2v}
		${}^{2}A'$ (5), ${}^{2}A''$ (5)	C_s
$N(^{2}P_{u}) + O_{2}(X^{3}\Sigma_{g}^{-})$	4.977	2.45-, 2.411	C∞v
-		^{2,4} A ₁ , ^{2,4} A ₂ , ^{2,4} B ₂	C _{2v}
		^{2,4} A', ^{2,4} A" (2)	C_s
$N(^2D_u) + O_2(b^1\Sigma_g^+)$	5.420	² Σ-, ² Π, ² Δ	C _{oov}
-		${}^{2}A_{1}$, ${}^{2}A_{2}(2)$, ${}^{2}B_{1}$, ${}^{2}B_{2}$	C _{2v}
		${}^{2}A'(2), {}^{2}A''(3)$	C_s
$N(^4S_u) + O_2(c^1\Sigma_u^-)$	5.499	4 Σ+	C _{∞ov}
		⁴ A ₁	C _{2v}
		4A ,	Cs
$N(^4S_u) + O_2(A'^3\Delta_u)$	5.701	2,4,6 △	C∞v
		^{2,4,6} A ₁ , ^{2,4,6} B ₂	C _{2v}
		2,4,6 _A , 2,4,6 _A ,	C_s
$N(^4S_u) + O_2(A^3\Sigma_u^+)$	5.789	2,4,6∑-	C∞v
		^{2,4,6} B ₂	C _{2v}
		2,4.6 _A "	C _{2v} C _s

Table 1. Molecular correlation diagram for $N + O_2$. (Concluded)

Reactants	Energ. (eV)	States	Point Group
$N(^{2}P_{u}) + O_{2}(a^{1}\Delta_{g})$	5.958	$^{2}\Pi$, $^{2}\Delta$, $^{2}\Phi$ $^{2}A_{1}(2)$, $^{2}A_{2}$, $^{2}B_{1}$, $^{2}B_{2}$ (2) $^{2}A'$ (3), $^{2}A''$ (3)	C _{∞v} C _{2v} C _s
$N(^{2}P_{u}) + O_{2}(b^{1}\Sigma_{g}^{+})$	6.612	$^{2}\Sigma^{+}$, $^{2}\Pi$ $^{2}A_{1}$, $^{2}B_{1}$, $^{2}B_{2}$ $^{2}A'$ (2), $^{2}A''$	$C_{\infty v} \\ C_{2v} \\ C_{s}$
Products	Energy (eV)	States	Point Group
$NO(^2\Pi) + O(^3P_g)$	0	$^{2,4}\Sigma^{+}$, $^{2,4}\Sigma^{-}$, $^{2,4}\Pi$, $^{2,4}\Delta$ $^{2,4}A'(3)$, $^{2,4}A''(3)$	$C_{\infty v} \\ C_{s}$
$NO(^2\Pi) + O(^1D_g)$	1.967	$^{2}\Sigma^{+}$, $^{2}\Sigma^{-}$, $^{2}\Pi(2)$, $^{2}\Delta$, $^{2}\Phi$ $^{2}A'$ (5), $^{2}A''$ (5)	$C_{\infty v} \\ C_{s}$
$NO(^2\Pi) + O(^1S_g)$	4.189	² Π ² Α΄, ² Α″	$C_{\infty v} \\ C_{s}$
NO $(a^4\Pi) + O(^3P_g)$	4.765	$^{2,4.6}\Sigma^{+}$, $^{2,4,6}\Sigma^{-}$, $^{2,4,6}\Pi$, $^{2,4,6}\Delta$	$C_{\infty v} \\ C_{s}$
NO $(A^2\Sigma^+)$ + O (^3P_g)	5.450	$^{2,4}\Sigma^{-},^{2,4}\Pi$ $^{2,4}A',^{2,4}A''$ (2)	$C_{\infty v} \\ C_{s}$
$NO(B^2\Pi) + O(^3P_g)$	5.693	$^{2.4\Sigma^{+}, 2.4\Sigma^{-}, 2.4\Pi, 2.4}\Delta$ $^{2.4}A'$ (3), $^{2.4}A''$ (3)	$\frac{C_{\inftyv}}{C_s}$
NO $(b^4\Sigma^-) + O(^3P_g)$	6.0344	$\frac{2.4.6\Sigma}{2.4.6\Lambda}$, $\frac{2.4.6\Pi}{2.4.6\Lambda}$	$C_{\infty V} C_s$

Table 2. Adiabatic reaction surfaces arising from $N[^2P] + O_2$.

Table 3. Adiabatic reaction surfaces arising from $N[^2D] + O_2$.

```
N * [^{2}D] + O_{2}[X^{3}\Sigma_{o}^{-}]
                                 \rightarrow NO_2 * [^2A' II]
                                                                  NO [X^2\Pi] + O [^3P] + 3.785 \text{ eV}
                                 \rightarrow NO_2 * [^2A' III]
                                                                NO [X^2\Pi] + O [^3P] + 3.785 \text{ eV}
                                 \rightarrow NO_2 * [^2A' IV]
                                                                 NO [X^2\Pi] + O * [^1D] + 1.878 eV
                                 \rightarrow NO_2 * [^2A'' I]
                                                                NO [X^2\Pi] + O [^3P] + 3.785 \text{ eV}
                                 \rightarrow NO_2 * [^2A'' II]
                                                                NO [X^2\Pi] + O [^3P] + 3.785 \text{ eV}
                                 \rightarrow NO<sub>2</sub> * [<sup>4</sup>A' III] \rightarrow
                                                                NO [X^2\Pi] + O [^3P] + 3.785 \text{ eV}
                                 \rightarrow NO_2 * [^4A' IV] \rightarrow
                                                                NO * [a^4\Pi] + O [^3P] - 0.980 eV
                                 → NO_2*[^4A'V] → NO*[a^4\Pi] + O[^3P] - 0.980 eV
                                 → NO_2 * [^4A'' III] → NO [X^2\Pi] + O [^3P] + 3.785 eV
                                 \rightarrow NO_2 * [^4A'' IV] \rightarrow
                                                                NO*[a^4\Pi] + O[^3P] - 0.980 eV
```

Table 4. Minimum energy long range interaction potentials for $N\,+\,O_2$ in C_s symmetry.

2 _A ,	$R = 4.0 \text{ bohrs}^a$	R = 3.0 bohrs	Long Range Character
$^{4}S_{u} + X^{3}\Sigma_{g}^{-}$	-201.4657103	-201.4657669	a
	-201.3423547	-201.3428036	a
$^{2}D_{u} + X^{3}\Sigma_{g}^{-}$	-201.3423540	-201.342542	r
J	-201.3423535	-201.3415228	r
	-201.3045858	-201.3051402	a
	-201.3045827	-201.3048667	a
$^2D_u + a^1\Delta_g$	-201.3045808	-201.3043220	r
- 6	-201.3045790	-201.3041826	r
	-201.3045775	-201.3040453	r
$^{2}P_{u} + X^{3}\Sigma_{g}^{-}$	-201.2994959	-201.2988189	r
2 A ″			
${}^{2}D_{u} + X^{3}\Sigma_{g}^{-}$	- -201.3423546	-201.3427958	a
≥u / 11 – g	-201.3423536	-201.3420978	r
	-201.3045845	-201.3051136	a
	-201.3045830	-201.3048777	a
$^2D_u + a^1\Delta_g$	-201.3045810	-201.3043588	r
- - - 5	-201.3045790	-201.3041614	r
	-201.3045775	-201.3040561	a
$^{2}P_{u} + X^{3}\Sigma_{g}^{-}$	-201.2994986	-201.2999683	a
- 8	-201.2994921	-201.2987603	r

 $^{{}^{}a}R$ is measured from N to the center of the O_{2} molecule, energy in hartrees.

SECTION 2

LIST OF REFERENCES

- 1. Piper, L. G., M. E. Donahue and W. T. Rawlins, "Rate Coefficients for N(2D) Reactions," Journal of Physical Chemistry, 91, p. 3883, 1987.
- 2. Piper, L. G., "The Rate Coefficient for Quenching N(2D) by O(3P)," <u>Journal of Chemical</u> Physics, 91, p. 3516, 1989.
- 3. Donovan, R. J. and D. Husain, "Recent Advances in the Chemistry of Electronically Excited Atoms," Chemical Reviews, 70, p. 489, 1970.
- 4. Schofield, K., "Critically Evaluated Rate Constants for Gaseous Reactions of Several Electronically Excited Species," <u>Journal of Physical Chemical Reference Data</u>, 8, p. 723, 1979.
- 5. Gilmore, F., "Recommended Revision of the NORSE Calculation of NO Chemiluminescence from N[²P] + O₂," RDA Technical Note, November 17, 1986.
- 6. Dupuis, M., D. Spangler and J. J. Wendoloski: GAMESS User's Guide, Lawrence Berkeley Laboratory, 1980.

DISTRIBUTION LIST

DNA-TR-90-94

DEPARTMENT OF DEFENSE

ASSISTANT TO THE SECRETARY OF DEFENSE ATTN: EXECUTIVE ASSISTANT

DEFENSE INTELLIGENCE AGENCY
ATTN: RTS-2B

DEFENSE NUCLEAR AGENCY
ATTN: PRPD R YOHO
ATTN: RAAE D RIGGIN
ATTN: RAAE K SCHWARTZ

ATTN: RAAE L WITTWER ATTN: RAAE S BERGGREN

4 CYS ATTN: TITL

DEFENSE TECHNICAL INFORMATION CENTER 2 CYS ATTN: DTIC/FDAB

STRATEGIC AND THEATER NUCLEAR FORCES
ATTN: DR E SEVIN

STRATEGIC DEFENSE INITIATIVE ORGANIZATION

ATTN: CS ATTN: EN

ATTN: PTP COL RIVA

ATTN: PTP LTC SEIBERLING

2 CYS ATTN: SDIO/TNS MAJ IMKER ATTN: TN/DR M GRIFFIN

DEPARTMENT OF THE ARMY

HARRY DIAMOND LABORATORIES
ATTN: SLCIS-IM-TL

U S ARMY ATMOSPHERIC SCIENCES LAB 3 CYS ATTN: SLCAS-AE-E

ATTN: SLCAS-AS-M R OLSEN

U S ARMY MISSILE COMMAND/AMSMI-RD-CS-R ATTN: AMSMI-RD-CS-R

U S ARMY NUCLEAR & CHEMICAL AGENCY ATTN: MONA-NU D BASH

U S ARMY RESEARCH OFFICE ATTN: R MACE

DEPARTMENT OF THE NAVY

NAVAL AIR PROPULSION CENTER ATTN: PE34 F HUSTED

NAVAL POSTGRADUATE SCHOOL ATTN: CODE 1424 LIBRARY

NAVAL RESEARCH LABORATORY ATTN: CODE 2000 J BROWN

ATTN: CODE 2627

ATTN: CODE 4121.8 H HECKATHORN ATTN: CODE 4128.2 J JOHNSON ATTN: CODE 4700 W ALI ATTN: CODE 4700 S OSSAKOW ATTN: CODE 4720 J DAVIS ATTN: CODE 7127 C JOHNSON ATTN: CODE 7557 J DAVIS

OFFICE OF NAVAL RESEARCH ATTN: CODE 1112

DEPARTMENT OF THE AIR FORCE

AIR FORCE GEOPHYSICS LABORATORY

ATTN: OP A GIANETTI ATTN: OP A RATKOSKY ATTN: OP / D PAULSEN ATTN: OP E GOOD ATTN: OP W BLUMBERG ATTN: OPE H GARDINER

AIR FORCE OFFICE OF SCIENTIFIC RSCH

ATTN: AFOSR/NC ATTN: AFOSR/NP

USAFETAC/CB ATTN: CBTL

WEAPONS LABORATORY ATTN: WL/SUL

DEPARTMENT OF ENERGY

EG&G, INC

ATTN: C ANDELARIA

LAWRENCE LIVERMORE NATIONAL LAB ATTN: L-84 A GROSSMAN ATTN: L-84 G SIMONSON

ATTN: L-84 H KRUGER

LOS ALAMOS NATIONAL LABORATORY
ATTN: REPORT LIBRARY

SANDIA NATIONAL LABORATORIES
ATTN: CODE 9014 R BACKSTROM
ATTN: TECH LIB 3141

OTHER GOVERNMENT

DEPARTMENT OF COMMERCE ATTN: ASST ADMINISTRATOR, RD

NASA

ATTN: CODE JM6

NATIONAL OCEANIC & ATMOSPHERIC ADMIN

ATTN: D ALBRITTON ATTN: W SPJELDVIK

NATIONAL SCIENCE FOUNDATION
ATTN: DIV OF ATMOS SCI R MCNEAL

DNA-TR-90-94 (DL CONTINUED)

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORP

ATTN: C CREWS

ATTN: CRICE

ATTN: D RUDOLPH

ATTN: DR J M STRAUS

ATTN: G LIGHT

ATTN: J REINHEIMER

ATTN: N COHEN

ATTN: R COHEN

ERIM

ATTN: IRIA LIBRARY

GENERAL RESEARCH CORP INC

ATTN: J EOLL

INSTITUTE FOR DEFENSE ANALYSES

ATTN: E BAUER

JOHNS HOPKINS UNIVERSITY

ATTN: J KAUFMAN

KAMAN SCIENCES CORP

ATTN: DASIAC

ATTN: E CONRAD

ATTN: G DITTBERNER

KAMAN SCIENCES CORPORATION

ATTN: B GAMBILL

5 CYS ATTN: DASIAC

ATTN: R RUTHERFORD

LOWELL, UNIVERSITY OF

ATTN: GS SALES

MCDONNELL DOUGLAS CORPORATION

ATTN: J GROSSMAN

MISSION RESEARCH CORP

ATTN: R ARMSTRONG

ATTN: W WHITE

MISSION RESEARCH CORP

ATTN: R L BOGUSCH

MISSION RESEARCH CORP

ATTN: C LONGMIRE

ATTN: R HENDRICK

ATTN: R STOECKLY

2 CYS ATTN: TECH LIBRARY

PHOTOMETRICS, INC.

ATTN: ILKOFSKY

PHOTON RESEARCH ASSOCIATES ATTN: D BURWELL

PHYSICAL RESEARCH INC

ATTN: W. SHIH

PHYSICAL RESEARCH, INC.

ATTN: T STEPHENS

PHYSICAL RESEARCH, INC.

ATTN: J DEVORE

ATTN: J JORDANO

PHYSICAL SCIENCES, INC

ATTN: G CALEDONIA

R & D ASSOCIATES

ATTN: F GILMORE

SCIENCE APPLICATIONS INTL CORP

ATTN: D HAMLIN

ATTN: D SACHS

SRI INTERNATIONAL

ATTN: W CHESNUT

TECHNOLOGY INTERNATIONAL CORP

ATTN: W BOOUIST

TELEDYNE BROWN ENGINEERING

ATTN: P SHELTON

TOYON RESEARCH CORP

ATTN: JISE

TRW INC

ATTN: TECH INFO CTR

TRW SPACE & DEFENSE SECTOR SPACE

ATTN: HL DEPT LIBRARY

UNITED TECHNOLOGIES RESEARCH CTR

5 CYS ATTN: H MICHELS

VISIDYNE, INC

ATTN: J CARPENTER

DIRECTORY OF OTHER

HARVARD UNIVERSITY

ATTN: LIBRARY